Copied to
clipboard

G = C23.21D14order 224 = 25·7

2nd non-split extension by C23 of D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.21D14, (C2×C28)⋊6C4, (C2×C4)⋊4Dic7, C28.37(C2×C4), C4⋊Dic717C2, (C22×C4).7D7, C74(C42⋊C2), (C4×Dic7)⋊15C2, C2.4(C4○D28), (C2×C4).102D14, C4.15(C2×Dic7), C23.D7.5C2, C14.16(C4○D4), (C2×C14).44C23, C14.24(C22×C4), (C22×C28).10C2, (C2×C28).93C22, C22.5(C2×Dic7), C2.5(C22×Dic7), C22.22(C22×D7), (C22×C14).36C22, (C2×Dic7).35C22, (C2×C14).35(C2×C4), SmallGroup(224,121)

Series: Derived Chief Lower central Upper central

C1C14 — C23.21D14
C1C7C14C2×C14C2×Dic7C4×Dic7 — C23.21D14
C7C14 — C23.21D14
C1C2×C4C22×C4

Generators and relations for C23.21D14
 G = < a,b,c,d,e | a2=b2=c2=1, d14=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=d13 >

Subgroups: 206 in 76 conjugacy classes, 49 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, C23, C14, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, Dic7, C28, C2×C14, C2×C14, C2×C14, C42⋊C2, C2×Dic7, C2×C28, C2×C28, C22×C14, C4×Dic7, C4⋊Dic7, C23.D7, C22×C28, C23.21D14
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C4○D4, Dic7, D14, C42⋊C2, C2×Dic7, C22×D7, C4○D28, C22×Dic7, C23.21D14

Smallest permutation representation of C23.21D14
On 112 points
Generators in S112
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)
(1 90)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 100)(12 101)(13 102)(14 103)(15 104)(16 105)(17 106)(18 107)(19 108)(20 109)(21 110)(22 111)(23 112)(24 85)(25 86)(26 87)(27 88)(28 89)(29 59)(30 60)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 81)(52 82)(53 83)(54 84)(55 57)(56 58)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 71 104 55)(2 84 105 40)(3 69 106 53)(4 82 107 38)(5 67 108 51)(6 80 109 36)(7 65 110 49)(8 78 111 34)(9 63 112 47)(10 76 85 32)(11 61 86 45)(12 74 87 30)(13 59 88 43)(14 72 89 56)(15 57 90 41)(16 70 91 54)(17 83 92 39)(18 68 93 52)(19 81 94 37)(20 66 95 50)(21 79 96 35)(22 64 97 48)(23 77 98 33)(24 62 99 46)(25 75 100 31)(26 60 101 44)(27 73 102 29)(28 58 103 42)

G:=sub<Sym(112)| (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,85)(25,86)(26,87)(27,88)(28,89)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,57)(56,58), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,71,104,55)(2,84,105,40)(3,69,106,53)(4,82,107,38)(5,67,108,51)(6,80,109,36)(7,65,110,49)(8,78,111,34)(9,63,112,47)(10,76,85,32)(11,61,86,45)(12,74,87,30)(13,59,88,43)(14,72,89,56)(15,57,90,41)(16,70,91,54)(17,83,92,39)(18,68,93,52)(19,81,94,37)(20,66,95,50)(21,79,96,35)(22,64,97,48)(23,77,98,33)(24,62,99,46)(25,75,100,31)(26,60,101,44)(27,73,102,29)(28,58,103,42)>;

G:=Group( (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,85)(25,86)(26,87)(27,88)(28,89)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,81)(52,82)(53,83)(54,84)(55,57)(56,58), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,71,104,55)(2,84,105,40)(3,69,106,53)(4,82,107,38)(5,67,108,51)(6,80,109,36)(7,65,110,49)(8,78,111,34)(9,63,112,47)(10,76,85,32)(11,61,86,45)(12,74,87,30)(13,59,88,43)(14,72,89,56)(15,57,90,41)(16,70,91,54)(17,83,92,39)(18,68,93,52)(19,81,94,37)(20,66,95,50)(21,79,96,35)(22,64,97,48)(23,77,98,33)(24,62,99,46)(25,75,100,31)(26,60,101,44)(27,73,102,29)(28,58,103,42) );

G=PermutationGroup([[(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84)], [(1,90),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,100),(12,101),(13,102),(14,103),(15,104),(16,105),(17,106),(18,107),(19,108),(20,109),(21,110),(22,111),(23,112),(24,85),(25,86),(26,87),(27,88),(28,89),(29,59),(30,60),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,81),(52,82),(53,83),(54,84),(55,57),(56,58)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,71,104,55),(2,84,105,40),(3,69,106,53),(4,82,107,38),(5,67,108,51),(6,80,109,36),(7,65,110,49),(8,78,111,34),(9,63,112,47),(10,76,85,32),(11,61,86,45),(12,74,87,30),(13,59,88,43),(14,72,89,56),(15,57,90,41),(16,70,91,54),(17,83,92,39),(18,68,93,52),(19,81,94,37),(20,66,95,50),(21,79,96,35),(22,64,97,48),(23,77,98,33),(24,62,99,46),(25,75,100,31),(26,60,101,44),(27,73,102,29),(28,58,103,42)]])

C23.21D14 is a maximal subgroup of
C28.8C42  C42⋊Dic7  C28.3C42  (C2×C56)⋊C4  C23.9D28  M4(2)⋊4Dic7  C56⋊C4⋊C2  C23.10D28  C23.13D28  C4.Dic7⋊C4  C28.45(C4⋊C4)  (C2×D28)⋊13C4  (C2×D4).D14  C14.(C4○D8)  C28.12C42  Dic7⋊C8⋊C2  C23.22D28  C23.23D28  C28.439(C2×D4)  C23.46D28  C23.47D28  C28.7C42  C23.48D28  C23.20D28  (D4×C14)⋊6C4  (Q8×C14)⋊6C4  C28.(C2×D4)  (D4×C14)⋊9C4  (D4×C14)⋊10C4  C42.274D14  C4×C4○D28  C24.31D14  C14.72+ 1+4  C14.82+ 1+4  C14.52- 1+4  C42.87D14  C42.88D14  C42.90D14  D7×C42⋊C2  C427D14  C42.102D14  C42.105D14  C42.106D14  C42.229D14  C42.117D14  C42.119D14  C14.712- 1+4  C14.432+ 1+4  C14.452+ 1+4  C14.472+ 1+4  C14.152- 1+4  C14.212- 1+4  C14.232- 1+4  C14.242- 1+4  C14.802- 1+4  C14.1222+ 1+4  C24.72D14  C24.38D14  C24.41D14  C14.422- 1+4  C14.442- 1+4  C14.1052- 1+4  C4○D4×Dic7  C14.1062- 1+4  (C2×C28)⋊15D4  C14.1462+ 1+4
C23.21D14 is a maximal quotient of
C42.6Dic7  C42.7Dic7  C424Dic7  C4×C4⋊Dic7  C429Dic7  C425Dic7  C24.8D14  C4⋊C45Dic7  C42.187D14  C4×C23.D7  C24.63D14  C23.27D28

68 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N7A7B7C14A···14U28A···28X
order1222224444444···477714···1428···28
size11112211112214···142222···22···2

68 irreducible representations

dim111111222222
type++++++-++
imageC1C2C2C2C2C4D7C4○D4Dic7D14D14C4○D28
kernelC23.21D14C4×Dic7C4⋊Dic7C23.D7C22×C28C2×C28C22×C4C14C2×C4C2×C4C23C2
# reps12221834126324

Matrix representation of C23.21D14 in GL3(𝔽29) generated by

2800
010
0028
,
2800
010
001
,
100
0280
0028
,
100
030
0019
,
1200
0019
030
G:=sub<GL(3,GF(29))| [28,0,0,0,1,0,0,0,28],[28,0,0,0,1,0,0,0,1],[1,0,0,0,28,0,0,0,28],[1,0,0,0,3,0,0,0,19],[12,0,0,0,0,3,0,19,0] >;

C23.21D14 in GAP, Magma, Sage, TeX

C_2^3._{21}D_{14}
% in TeX

G:=Group("C2^3.21D14");
// GroupNames label

G:=SmallGroup(224,121);
// by ID

G=gap.SmallGroup(224,121);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,48,103,362,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^14=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^13>;
// generators/relations

׿
×
𝔽